On endoscopy for covering groups of SL(2).

Kaoru Hiraga

2012 Conference on L-functions
2012/08/23

Shineville Resort Jeju

Joint work with T. Ikeda (in progress.)

Plan

- Brief review of Labesse-Langlands (endoscopy for $S L_{2}$).
- Endoscopy for 2-fold covering of $S L_{2}$.
- Fundamental lemma for F / \mathbb{Q}_{2}.
- Generalization of Kohnen's plus space.
- Endoscopy for n-fold covering of $S L_{2}$ where n is odd.
- Endoscopy for $\widetilde{S L_{2}}$.
- Covering groups of D^{\times}and D^{1}.
Brief Review of Labesse-Langlands
F : p-adic field
$G=S L_{2}(F)$:

Representation:	L-packet $\Pi_{\phi}(G)$	Irreducible rep.
Conjugacy class:	Stable conjugacy class	conjugacy class

ϕ : L-parameter
Endoscopic group H invariant distribution $\stackrel{\operatorname{Tran}_{H}^{G}}{ }$ stable distribution
Rep. $\quad \sum_{\pi \in \Pi_{\phi}(G)} c_{\pi} J(\pi) \longleftrightarrow J^{s t}\left(\phi^{H}\right)$
Conj. $\quad \sum_{g \in \mathcal{O}^{s t}} \Delta(h, g) J(g) \longleftarrow J^{s t}(h)$
h : regular semisimple

Elliptic endoscopic group H of G are one of the following type.

$$
\begin{aligned}
& G \\
& E^{1}=\left\{x \in E^{\times} \mid N_{E / F}(x)=1\right\}, \quad E / F: \text { quadratic extension }
\end{aligned}
$$

We regard H as an subgroup of G.

$$
H \subset G
$$

$$
\begin{array}{r}
a+b \tau \in E^{1} \mapsto\left(\begin{array}{cc}
a & b v \\
b & a+b u
\end{array}\right) \\
\quad E=F(\tau) \\
\tau^{2}=u \tau+v
\end{array}
$$

```
\(G_{\text {reg }}=\{g \in G \mid g\) is regular semisimple \(\}\)
\(g\) is regular semisimple if \(\operatorname{Cent}(g, G) \simeq G L_{1}\) is a torus.
```

$H_{G \text {-reg }}=\{h \in H \mid h$ is regular semisimple in $G\}$

We say that $g, g^{\prime} \in G$ is "stably conjugate" if there exists $x \in$ $G L_{2}(F)$ such that.

$$
g^{\prime}=x^{-1} g x
$$

We say that $h \in H_{G \text {-reg }}$ is an "image" of $g \in G_{\text {reg }}$ if h is stably conjugate to g in G.
\{stable conjugacy class of $\left.G_{\text {reg }}\right\} \longleftarrow$ \{stable conjugacy class of $\left.H_{G \text {-reg }}\right\}$

We can define a transfer factor
$\Delta_{G, H}(h, g) \in \mathbb{C}^{\times}, \quad h \in H_{G \text {-reg }}$ is an image of $g \in G_{\text {reg }}$.

$$
\sum_{g \in G_{\mathrm{reg}} / \sim} \Delta(h, g) J(g, \cdot) \longleftarrow J^{s t}(h, \cdot)
$$

We say that $f \in C_{c}^{\infty}(G)$ and $f^{H} \in C_{c}^{\infty}(H)$ have "matching orbital integrals" if

$$
\sum_{g \in G \mathrm{reg} / \sim} \Delta_{G, H}(h, g) J(g, f)=J^{s t}\left(h, f^{H}\right), \quad{ }^{\forall} h \in H_{G \text {-reg }}
$$

Existence of transfer

For each $f \in C_{c}^{\infty}(G)$ there exists $f^{H} \in C_{c}^{\infty}(H)$ such that f and f^{H} have matching orbital integrals.
$J(g, f)=D(g) \int_{\text {Cent }}(g, G) \backslash G f\left(x^{-1} g x\right) d x$
$D(g)$: Weyl denominator
$G_{\text {reg }} / \sim$: set of conjugacy classes in $G_{\text {reg }}$
$\Delta_{G, H}(h, g)=0$ if h is not an image of g $J^{s t}\left(h, f^{H}\right)=\sum_{h^{\prime} \sim_{s t} h} J\left(h^{\prime}, f^{H}\right)$

$$
\left.\{\text { distribution on } G\} \stackrel{\operatorname{Tran}_{H}^{G}}{\longleftrightarrow} \text { \{stable distribution on } H\right\}
$$

For stable distribution S on H, we define an invariant distribution $\operatorname{Tran}_{H}^{G} S$ by

$$
\operatorname{Tran}_{H}^{G} S(f)=S\left(f^{H}\right)
$$

where f and f^{H} have matching orbital integrals.

We say that S is "stable" if

$$
S\left(f^{H}\right)=0, \quad{ }^{\forall} f^{H} \in C_{c}^{\infty,-}(H)
$$

where

$$
C_{c}^{\infty,-}(H)=\left\{f^{H} \in C_{c}^{\infty}(H) \mid J^{s t}\left(h, f^{H}\right)=0, \quad{ }^{\forall} h \in H_{\mathrm{reg}}\right\}
$$

For $H=S L_{2}$ or E^{1} for unramified E / F we have a homomorphism

$$
\lambda: \mathcal{H}(G, K) \longrightarrow \mathcal{H}\left(H, K^{H}\right)
$$

$\mathcal{H}(G, K)$: Hecke algebra

$$
K=S L_{2}\left(\mathfrak{o}_{F}\right)
$$

$$
K^{H}=H\left(\mathfrak{o}_{F}\right)
$$

\mathfrak{o}_{F} : ring of integer of F.

Fundamental lemma
For any $f \in \mathcal{H}(G, K)$, functions f and $\lambda(f)$ have matching orbital integrals.

Packet and endoscopy

$$
\sharp \Pi_{\phi}(G)=1,2,4
$$

Endoscopic groups for $\Pi_{\phi}(G)$ are

$$
\begin{cases}G, & \sharp \Pi_{\phi}(G)=1 \\ G, \text { one of } E^{1}, & \sharp \Pi_{\phi}(G)=2 \\ G, E_{1}^{1}, E_{2}^{1}, E_{3}^{1}, & \sharp \Pi_{\phi}(G)=3\end{cases}
$$

Case $H=G$

$$
\sum_{\pi \in \Pi_{\phi}(G)} J(\pi)=\operatorname{Tran}_{H}^{G}(\text { stable distribution })
$$

is stable.
$J(\pi)$: distribution character of π.

Packet and endoscopy
If $\sharp \Pi_{\phi}(G)=2$, then there exists a character π^{H} of $H=E^{1}$ such that

$$
J\left(\pi_{1}\right)-J\left(\pi_{2}\right)=\operatorname{Tran}_{H}^{G} J\left(\pi^{H}\right)
$$

If $\sharp \Pi_{\phi}(G)=4$, then there exists a character π_{i}^{H} of $E_{i}^{1}(i=1,2,3)$ such that

$$
\begin{aligned}
& J\left(\pi_{1}\right)+J\left(\pi_{2}\right)-J\left(\pi_{3}\right)-J\left(\pi_{4}\right)=\operatorname{Tran}_{E_{1}^{1}}^{G} \pi_{1}^{H} \\
& J\left(\pi_{1}\right)-J\left(\pi_{2}\right)+J\left(\pi_{3}\right)-J\left(\pi_{4}\right)=\operatorname{Tran}_{E_{2}^{1}}^{G} \pi_{2}^{H} \\
& J\left(\pi_{1}\right)-J\left(\pi_{2}\right)-J\left(\pi_{3}\right)+J\left(\pi_{4}\right)=\operatorname{Tran}_{E_{3}^{1}}^{G} \pi_{3}^{H}
\end{aligned}
$$

if you number π_{1}, \ldots, π_{4} properly.

Correspondence between stable conjugacy of G and H

> Existence of transfer

Fundamental Iemma
\Downarrow

Lift from representation of H to G

Description of the packets
(We use twisted endoscopy and twisted trace formula of $G L_{2}(F)$ to get the results.)
n-fold covering group of $G=S L_{2}(F)$
F : p-adic field.
\mathfrak{o}_{F} : ring of integers of F.
\mathfrak{p}_{F} : prime ideal in \mathfrak{o}_{F}.
μ_{n} : n-th roots of 1 in F^{\times}.

Assumption
We assume

$$
\sharp \mu_{n}=n,
$$

i.e., all n-th roots of 1 are contained in F^{\times}.

We can define n-th power norm residue symbol.

Definition

n-fold covering group \widetilde{G}

$$
1 \longrightarrow \mu_{n} \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1
$$

is defined by

$$
\begin{aligned}
{\left[g_{1}, \zeta_{1}\right]\left[g_{2}, \zeta_{2}\right]=[} & \left.g_{1} g_{2}, \zeta_{1} \zeta_{2} \mathbf{c}\left(g_{1}, g_{2}\right)\right] \\
& g_{1}, g_{2} \in G, \zeta_{1}, \zeta_{2} \in \mu_{n}
\end{aligned}
$$

where c is Kubota's 2-cocycle:

$$
\begin{gathered}
\mathbf{c}\left(g_{1}, g_{2}\right)=\left\langle\frac{\mathbf{x}\left(g_{1}\right)}{\mathbf{x}\left(g_{1} g_{2}\right)}, \frac{\mathbf{x}\left(g_{2}\right)}{\mathbf{x}\left(g_{1} g_{2}\right)}\right\rangle_{n} \\
\mathbf{x}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)= \begin{cases}c, & c \neq 0 \\
d, & c=0\end{cases}
\end{gathered}
$$

\langle,\rangle_{n} : n-th power norm residue symbol

Let $C_{c}^{\infty}(\widetilde{G})$ be the space of locally constant compactly supported function \tilde{f} on \widetilde{G} such that

$$
\widetilde{f}(\widetilde{g} \cdot[1, \zeta])=\zeta^{-1} \widetilde{f}(\widetilde{g}), \quad \forall \widetilde{g} \in \widetilde{G}, \zeta \in \mu_{n}
$$

(Anti-genuine function.)

For subset A in G, we denote by \widetilde{A} the inverse image of A in \widetilde{G}. For example,

$$
\begin{aligned}
\widetilde{G_{\text {reg }}} & =\left\{[g, \zeta] \mid g \in G_{\text {reg }}, \zeta \in \mu_{n}\right\} \\
S \widetilde{L_{2}\left(\mathfrak{o}_{F}\right)} & =\left\{[k, \zeta] \mid k \in S L_{2}\left(\mathfrak{o}_{F}\right), \zeta \in \mu_{n}\right\}
\end{aligned}
$$

If $(n, p)=1$ then we have a splitting

$$
\mathrm{s}: S L_{2}\left(\mathfrak{o}_{F}\right) \longrightarrow S \widetilde{S L_{2}\left(\mathfrak{o}_{F}\right)}
$$

Definition

For $\tilde{g} \in \widetilde{G_{\text {reg }}}$, we say that \tilde{g} is "relevant" if

$$
\tilde{x}^{-1} \tilde{g} \tilde{x}=\widetilde{g}
$$

for any $\tilde{x} \in \widetilde{\operatorname{Cent}(g, G)}$. We put

$$
\widetilde{G}_{\text {rel }}=\{\tilde{g} \in \tilde{G} \mid \tilde{g} \text { is relevant. }\}
$$

If \tilde{g} is not relevant then ${ }^{\exists} \tilde{x} \in \widetilde{\operatorname{Cent}(g, G)}$ s.t.

$$
\tilde{x}^{-1} \tilde{g} \widetilde{x}=\tilde{g}\left[1, \zeta^{\prime}\right], \quad \zeta^{\prime} \neq 1 .
$$

Hence

$$
\begin{gathered}
J(\tilde{g}, \tilde{f})=0 . \\
J(\tilde{g}, \tilde{f})=D(g) \int_{\operatorname{Cent}(\widetilde{g}, \widetilde{G}) \backslash \widetilde{G}} \tilde{f}\left(\widetilde{x}^{-1} \tilde{g} \widetilde{x}\right) d \widetilde{x}
\end{gathered}
$$

$n_{0}= \begin{cases}n / 2, & n: \text { even } \\ n, & n: \text { odd }\end{cases}$
$\widetilde{g}=[g, \zeta] \in \widetilde{G_{\mathrm{reg}}}$ is relevant if and only if there exists $h \in G_{\mathrm{reg}}$ s.t.

$$
g=h^{n_{0}} \text { or }-h^{n_{0}}
$$

Elliptic endoscopic group of \widetilde{G}

$$
\begin{array}{ll}
n: \text { even } & P G L_{2}, P G L_{2} \\
n: \text { odd } & S L_{2}, E^{1}(E / F: \text { quadratic ext. })
\end{array}
$$

- J. P. Schultz: $n=2$
- A. Trehan: $\widetilde{S L_{N}}(n \mid N)$
- Wen-Wei Li: 2-fold covering group of $S p(2 N)$

$$
n=2
$$

We put

$$
H^{+}=H^{-}=P G L_{2}(F)
$$

We define $\tau^{+}, \tau^{-}: P G L_{2}(F) \longrightarrow S L_{2}(F)$ by

$$
\begin{gathered}
G L_{2}(F) \ni h \longrightarrow \\
H^{+}=P G L_{2}(F) \tau^{+} \\
G L_{2}(F) \ni h \longrightarrow \operatorname{det}(h)^{-1} h^{2} \\
H^{-}=P G L_{2}(F) \quad S L_{2}(F) \ni-\operatorname{det}(h)^{-1} h^{2}
\end{gathered}
$$

We say that $h \in H^{ \pm}(F)$ is an image of $[g, \zeta] \in \widetilde{G}$ if

$$
\tau^{ \pm}(h) \sim_{s t} g
$$

$\sim_{s t}$: stably conjugate.

Definition

If $h \in H^{+}(F)$ is an image of $[g, \zeta] \in \widetilde{G}$ then we define a transfer factor Δ_{ψ}^{+}by

$$
\Delta_{\psi}^{+}(h,[g, \zeta])=\zeta \frac{\alpha_{\psi}(1)}{\alpha_{\psi}(\operatorname{det} h)} \mathbf{c}\left(\operatorname{det} h \cdot 1_{2}, g\right)
$$

If $h \in H^{-}(F)$ is an image of $[g, \zeta] \in \widetilde{G}$ then we define a transfer factor Δ_{ψ}^{-}by

$$
\Delta_{\psi}^{-}(h,[g, \zeta])=\alpha_{\psi}(1)^{2} \mathbf{c}\left(-1_{2}, g\right) \Delta_{\psi}^{+}(h,[-1,1][g, \zeta])
$$

ψ : non-trivial additive character of F
$\gamma_{\psi}(x)$: Weil constant

$$
\int_{F} \phi(t) \psi\left(x t^{2}\right) d t=\alpha_{\psi}(x)|x|^{-1 / 2} \int_{F} \widehat{\phi}(t) \psi\left(-t^{2} / 4 x\right) d t, \quad \phi \in \mathcal{S}(F)
$$

where

$$
\widehat{\phi}(t)=\int_{F} \phi(u) \psi(t u) d u_{\psi}
$$

is the Fourier transform of ϕ and $d u_{\psi}$ is the self-dual Haar measure.

Theorem
"Existence of transfer" holds.

Theorem
If p is odd then "Fundamental Lemma" holds.

Cheorem (Schultz)
Let π be an irreducible admissible representation of $P G L_{2}(F)$. Then there are two admissible representations $\widetilde{\pi}^{+}$and $\widetilde{\pi}^{-}$of \widetilde{G}, which are either irreducible or zero, such that

$$
\begin{aligned}
& \operatorname{Tran}_{H^{+}}^{\widetilde{G}}(J(\pi))=J\left(\widetilde{\pi}^{+}\right)+J\left(\widetilde{\pi}^{-}\right) \\
& \operatorname{Tran}_{H^{-}}^{\widetilde{G}}(J(\pi))=J\left(\widetilde{\pi}^{+}\right)-J\left(\widetilde{\pi}^{-}\right)
\end{aligned}
$$

$\widetilde{\pi}^{+}, \widetilde{\pi}^{-}$are described by theta correspondence and ϵ-factor.

Fundamental Iemma for F / \mathbb{Q}_{2}

ψ : non-trivial additive character of F
c_{ψ} : maximum integer c such that $\psi\left(\mathfrak{p}_{F}^{c}\right)=1$
$\mathfrak{c}=\mathfrak{p}^{c_{\psi}}$
ω_{ψ} : Weil representation acting on $\mathcal{S}(F)$

$$
\left(\phi_{1}, \phi_{2}\right)=\int_{F} \phi_{1}(x) \overline{\phi_{2}(x)} d x, \quad \phi_{1}, \phi_{2} \in \mathcal{S}(F)
$$

Haar meausure on F is normalized so that $\operatorname{Vol}\left(\mathfrak{o}_{F}\right)=1$.

For ideals $\mathfrak{a}, \mathfrak{b}$ such that $\mathfrak{a b} \subset \mathfrak{o}_{F}$ we put

$$
\left\ulcorner[\mathfrak{a}, \mathfrak{b}]=\left\{\left(\begin{array}{cc}
\mathfrak{o}_{F} & \mathfrak{a} \\
\mathfrak{b} & \mathfrak{o}_{F}
\end{array}\right)\right\} \cap G\right.
$$

We put

$$
\Gamma=\Gamma\left[\mathfrak{c}^{-1}, 4 \mathfrak{c}\right]
$$

We define a (anti-) genuine character $\epsilon: \tilde{\Gamma} \longrightarrow \mathbb{C}^{\times}$by

$$
\omega_{\psi}(g) \phi_{0}=\epsilon(g)^{-1} \phi_{0}
$$

where $\phi_{0} \in \mathcal{S}(F)$ is the characteristic function of ${ }^{\circ} F$.

The Hecke algebra $\widetilde{\mathcal{H}}=\widetilde{\mathcal{H}}\left(\widetilde{S L_{2}(F)}, \widetilde{\Gamma} ; \epsilon\right)$ is the space of (anti-) genuine function $\widetilde{\varphi} \in \widetilde{C}_{c}^{\infty}(\widetilde{G})$ such that

$$
\widetilde{\varphi}\left(\widetilde{\gamma}_{1} \tilde{g} \widetilde{\gamma}_{2}\right)=\epsilon\left(\widetilde{\gamma}_{1}\right) \epsilon\left(\widetilde{\gamma}_{2}\right) \widetilde{\varphi}(\widetilde{g}), \quad \widetilde{\gamma}_{1}, \widetilde{\gamma}_{2} \in \widetilde{\Gamma}
$$

We define an idempotent $e^{K} \in \widetilde{\mathcal{H}}$ by

$$
e^{K}(\widetilde{g})= \begin{cases}|2|_{F}^{-1}\left(\phi_{0}, \omega_{\psi}(\widetilde{g}) \phi_{0}\right), & \widetilde{g} \in \Gamma \widetilde{\left[\mathfrak{c}^{-1}, \mathfrak{c}\right]} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\widetilde{\mathcal{H}}^{e^{K}}=e^{K} * \widetilde{\mathcal{H}} * e^{K} \longrightarrow \mathcal{H}=\mathcal{H}\left(P G L_{2}(F), P G L_{2}\left(\mathfrak{o}_{F}\right)\right)
$$

Fundamental lemma
"Fundamental lemma" holds for H^{+}and H^{-}.

We put

$$
E^{K}(\widetilde{g})=e^{K}\left(\mathbf{w}_{2}^{-1} \widetilde{g} \mathbf{w}_{2}\right)
$$

where

$$
\mathbf{w}_{2}=\left[\left(\begin{array}{cc}
0 & -2^{-1} \\
2 & 0
\end{array}\right), 1\right]
$$

For general F / \mathbb{Q}_{p}, we define e^{K} and E^{K} similarly.

Kohnen plus space

$F=\mathbb{Q}$
$\mathfrak{h}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$

$$
\begin{aligned}
& S_{\kappa+(1 / 2)}\left(\Gamma_{0}(4)\right): \text { space of cusp forms } \\
& j^{\kappa+(1 / 2)}(\gamma, z)=\left(j^{1 / 2}(\gamma, z)\right)^{2 \kappa+1}, \gamma \in \Gamma_{0}(4), z \in \mathfrak{h} \\
& \theta(\gamma(z))=j^{1 / 2}(\gamma, z) \theta(z) \\
& \theta(z)=\sum_{x \in \mathbb{Z}} \exp \left(2 \pi \sqrt{-1} x^{2} z\right)
\end{aligned}
$$

Definition (Kohnen plus space)
$S_{\kappa+(1 / 2)}\left(\Gamma_{0}(4)\right)$ is the space of $h \in S_{\kappa+(1 / 2)}\left(\Gamma_{0}(4)\right)$ with Fourier expansion of the form

$$
h(z)=\sum_{(-1)^{\kappa} N \equiv 0,1} c(N) \exp (2 \pi \sqrt{-1} N z)
$$

Kohnen
As a Hecke module $S_{\kappa+(1 / 2)}^{+}\left(\Gamma_{0}(4)\right)$ is isomorphic to $S_{2 \kappa}\left(S L_{2}(\mathbb{Z})\right)$.

Generalization of Kohnen plus space

F: totally real number field of degree l over \mathbb{Q}
\mathbb{A} : ring of adele of \mathbf{F}
${ }^{\circ}{ }_{F}$: integer ring of \mathbf{F}
$\mathfrak{d}_{\mathbf{F}}$: different for \mathbf{F} / \mathbb{Q}

For

$$
\kappa=\left(\kappa_{1}, \ldots, \kappa_{l}\right) \in \mathbb{Z}_{\geq 0}^{l}
$$

we fix a unit $\eta \in \mathfrak{o}_{\mathrm{F}}^{\times}$such that

$$
N_{\mathbf{F} / \mathbb{Q}}(\eta)=\prod_{i=1}^{l}(-1)^{\kappa_{i}}
$$

Let ψ be the additive character of \mathbb{A} / \mathbf{F} such that

$$
\psi_{v}(x)=\exp \left(2 \pi \sqrt{-1} \eta_{v} x\right), \quad \forall_{v}: \text { real. }
$$

We put

$$
E^{K}=\prod_{v<\infty} E_{v}^{K}
$$

$$
\begin{aligned}
&\left.\mathcal{A}_{\kappa+(1 / 2)}^{\text {cusp }}\left(S L_{2}(\mathbf{F}) \backslash \widetilde{S L_{2}(\mathbb{A})}\right)\right)^{K} \\
&=\left\{\phi \in \mathcal{A}_{\kappa+(1 / 2)}^{\text {cusp }}\left(S L_{2}(\mathbf{F}) \backslash \widetilde{S L_{2}(\mathbb{A})}\right) \mid \rho\left(E^{K}\right) \phi=\phi\right\}
\end{aligned}
$$

where ρ is the right regular representation of $\widetilde{S L_{2}(\mathbb{A})}$.

Theorem
Assume $\kappa_{i}>1$ for some $i=1, \ldots, l$, then

$$
\mathcal{A}_{\kappa+(1 / 2)}^{\text {cusp }}\left(S L_{2}(\mathbf{F}) \backslash \widetilde{S L_{2}(\mathbb{A})}\right)^{E^{K}} \stackrel{1: 1}{\longleftrightarrow} \mathcal{A}_{2 \kappa}^{\text {cusp }}\left(P G L_{2}(\mathbf{F}) \backslash P G L_{2}(\mathbb{A}) / \mathcal{K}_{0}\right)
$$

$$
\mathcal{K}_{0}=\Pi_{v<\infty} P G L_{2}\left(\mathfrak{o}_{\mathbf{F}_{v}}\right)
$$

Let

$$
S_{\kappa+(1 / 2)}(\Gamma)^{E^{K}} \subset S_{\kappa+(1 / 2)}(\Gamma)
$$

be the subspace corresponding to the subspace

$$
\mathcal{A}_{\kappa+(1 / 2)}^{\text {cusp }}\left(S L_{2}(\mathbf{F}) \backslash \widetilde{S L_{2}(\mathbb{A})}\right)^{E^{K}}
$$

The factor of automorphy is given by

$$
j^{\kappa+(1 / 2), \eta}(\gamma, z)=\prod_{v<\infty} \epsilon_{v}([\gamma, 1]) \prod_{i=1}^{l} \widetilde{j}\left(\left[\iota_{i}(\gamma), 1\right], z_{i}\right)^{2 \kappa_{i}+1}
$$

$$
\begin{aligned}
& \Gamma=\Gamma\left[\mathfrak{d}_{\mathbf{F}}^{-1}, 4 \mathfrak{d}_{\mathbf{F}}\right] \\
& \widetilde{j}\left(\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \zeta\right], z\right)= \begin{cases}\zeta \sqrt{d}, & c=0, d>0 \\
-\zeta \sqrt{d}, & c=0, d<0 \\
\zeta(c z+d)^{1 / 2}, & c \neq 0\end{cases}
\end{aligned}
$$

$\iota_{1}, \ldots, \iota_{l}$ are embeddings of F into \mathbb{R}.

Theorem
Assume $\kappa_{i}>1$ for some $i=1, \ldots, l$, then
$\mathcal{A}_{\kappa+(1 / 2)}^{\text {cusp }}\left(S L_{2}(\mathbf{F}) \backslash \widetilde{S L_{2}(\mathbb{A})} ; \epsilon\right)^{E^{K}} \stackrel{1: 1}{\longleftrightarrow} \mathcal{A}_{2 \kappa}^{\text {cusp }}\left(P G L_{2}(\mathbf{F}) \backslash P G L_{2}(\mathbb{A}) / \mathcal{K}_{0}\right)$
Moreover

$$
S_{\kappa+(1 / 2)}\left(\ulcorner)^{E^{K}}=S_{\kappa+(1 / 2)}^{+}(\ulcorner),\right.
$$

where $S_{\kappa+(1 / 2)}^{+}\left(\ulcorner)\right.$is the space of $h(z) \in S_{\kappa+(1 / 2)}^{+}(\ulcorner)$with Fourier expansion of the form

$$
h(z)=\sum_{\xi \equiv \square} c(\xi) \exp (2 \pi \sqrt{-1} \xi z)
$$

$$
\begin{aligned}
& \xi \in \mathfrak{o}_{F} \\
& " \xi \equiv \square \bmod 4 " \text { means } \exists_{x \in \mathfrak{o}_{F}} \text { s.t. } \xi \equiv x^{2} \bmod 4
\end{aligned}
$$

(M. Ueda studied the relation for higher level Г.)

Theorem
For $h \in S_{\kappa+(1 / 2)}(\Gamma)^{E^{K}} \cap \mathcal{A}_{00}$ and totally positive $\xi \in \mathbf{F}^{\times}$we have

$$
\frac{\left|c_{\xi}\right|^{2}}{\left\langle\widetilde{\varphi_{h}}, \widetilde{\varphi_{h}}\right\rangle}=\mathcal{D}_{K}^{1 / 2} 2^{-1+3|\kappa|} \xi_{F}(2) \frac{L\left(1 / 2, \tau \otimes \hat{\chi}_{\eta \xi}\right)}{L(1, \tau, A d)}
$$

$h \longleftrightarrow \widetilde{\varphi_{h}} \in \mathcal{A}_{\kappa+(1 / 2)}\left(S L_{2}(\mathbf{F}) \backslash \widetilde{S L_{2}(\mathbb{A})}\right)^{E^{K}}$
$\widetilde{\varphi_{h}} \longleftrightarrow \widetilde{\sigma}$ automorphic representation of $\widetilde{S L_{2}}$
τ : automorphic representation of $P G L_{2}$ corresponding to $\tilde{\sigma}$ \mathcal{A}_{00} : The space of cusp forms orthogonal to the Weil representations associated to one-dimensional quadratic forms.
$\hat{\chi}_{a}$: Hecke character of \mathbb{A}^{\times}corr. to $F(\sqrt{a}) / F$.
c_{ξ} : given by the ξ-th Fourier coefficient of h.
$\left\langle\widetilde{\varphi_{h}}, \widetilde{\varphi_{h}}\right\rangle=\int_{S L_{2}(\mathbf{F}) \backslash S L_{2}(\mathbb{A})}\left|\widetilde{\varphi_{h}}(x)\right| d x$
\mathcal{D}_{F} : discriminant of F
ξ_{F} : complete Dedekind zeta
n : odd

We have a strict correspondence between $S L_{2}(F)$ and $\widetilde{S L_{2}(F)}$.

Definition
We say that $h \in S L_{2}(F)_{\text {reg }}$ is a strict image of $[g, \zeta] \in \widetilde{S L_{2}(F)_{\text {rel }}}$ if

$$
h^{n} \sim g
$$

where \sim means the conjugacy in $S L_{2}(F)$.

Definition (Transfer factor)
We define the transfer factor $\Delta_{s t}$ by

$$
\Delta_{s t}(h,[g, \zeta])= \begin{cases}\zeta, & h \text { is a strict image of }[g, \zeta] \\ 0, & \text { otherwise }\end{cases}
$$

For the above correspondence, we have

Theorem
"Existence of transfer" holds.
If $(p, n)=1$ then "Fundamental lemma" holds.

Endoscopy for $\widetilde{S L_{2}(F)}$

Elliptic endoscopic group of $\widetilde{S L_{2}(F)}$

$$
H=S L_{2}(F) \text { or } E^{1}
$$

$$
H \sim S L_{2}(F) \sim \widetilde{S L_{2}(F)}
$$

Theorem
"Existence of transfer" holds for H.
If $(p, n)=1$ then "Fundamental lemma" holds for H.

Theorem
There exists packets

$$
\begin{aligned}
\Pi(\widetilde{G}) & =\{\widetilde{\pi}\} \\
\text { or } \Pi(\widetilde{G}) & =\left\{\widetilde{\pi}_{1}, \widetilde{\pi}_{2}\right\} \\
\text { or } \Pi(\widetilde{G}) & =\left\{\widetilde{\pi}_{1}, \widetilde{\pi}_{2}, \widetilde{\pi}_{3}, \widetilde{\pi}_{4}\right\}
\end{aligned}
$$

If $\sharp П(G)=2$

$$
J\left(\widetilde{\pi}_{1}\right)-J\left(\widetilde{\pi}_{2}\right)=c \cdot \operatorname{Tran}_{E^{1}}^{G} J\left(\pi^{H}\right)
$$

If $\sharp \Pi_{\phi}(G)=4$, then there exists a character π_{i}^{H} of $E_{i}^{1}(i=1,2,3)$ such that

$$
\begin{aligned}
& J\left(\widetilde{\pi}_{1}\right)+J\left(\widetilde{\pi}_{2}\right)-J\left(\widetilde{\pi}_{3}\right)-J\left(\widetilde{\pi}_{4}\right)=c_{1} \cdot \operatorname{Tran}_{E_{1}^{1}}^{G} \pi_{1}^{H} \\
& J\left(\widetilde{\pi}_{1}\right)-J\left(\widetilde{\pi}_{2}\right)+J\left(\widetilde{\pi}_{3}\right)-J\left(\widetilde{\pi}_{4}\right)=c_{2} \cdot \operatorname{Tran}_{E_{2}^{1}}^{G} \pi_{2}^{H} \\
& J\left(\widetilde{\pi}_{1}\right)-J\left(\widetilde{\pi}_{2}\right)-J\left(\widetilde{\pi}_{3}\right)+J\left(\widetilde{\pi}_{4}\right)=c_{3} \cdot \operatorname{Tran}_{E_{3}^{1}}^{G} \pi_{3}^{H}
\end{aligned}
$$

if you number $\widetilde{\pi}_{1}, \ldots, \widetilde{\pi}_{4}$ properly.

Covering of D^{\times}
D : quaternion algebra
D^{1} : group of reduced norm 1 elements

We should have

$$
D_{\mathrm{rel}}^{\times} / \sim \longrightarrow G L_{2}(F)_{\mathrm{rel}} / \sim
$$

E / F : quadratic extension
$E^{\times} \subset G L_{2}(F)$

$$
[x, 1]^{-1}[y, 1][x, 1]=\left[y,\langle y, \bar{x}\rangle_{E, n}\right]
$$

In $G L_{2}(E)$

$$
\mathbf{c}\left(\left(\begin{array}{ll}
y & 0 \\
0 & \bar{y}
\end{array}\right),\left(\begin{array}{ll}
x & 0 \\
0 & \bar{x}
\end{array}\right)\right)=\langle y, \bar{x}\rangle_{E, n}
$$

Square root of the 2 -cocycle?

$$
\begin{aligned}
& \langle,\rangle_{E, n}^{m}, \quad 2 m \equiv 1 \quad \bmod n \\
& \langle,\rangle_{E, 2 n}
\end{aligned}
$$

E / F : quadratic extension

Definition

We construct a covering group $\widetilde{D^{\times}}$by the following way. Let $G L_{2}(E)$ be the covering of $G L_{2}(E)$ by

$$
\mathbf{c}\left(g_{1}, g_{2}\right)=\left\langle\frac{\mathbf{x}\left(g_{1}\right)}{\mathbf{x}\left(g_{1} g_{2}\right)}, \operatorname{det} g_{1} \frac{\mathbf{x}\left(g_{2}\right)}{\mathbf{x}\left(g_{1} g_{2}\right)}\right\rangle_{E, n}^{m}
$$

where $2 m \equiv 1 \bmod n$.

We define $\widetilde{D^{\times}}$by the pull-back of the image of $D^{\times} \longrightarrow G L_{2}(E)$.

We can also construct $\widetilde{D^{\times}}$from the covering of $G L_{2}(E)$ defined by the 2-cocycle

$$
\mathbf{c}^{\prime}\left(g_{1}, g_{2}\right)=\left\langle\frac{\mathbf{x}\left(g_{1}\right)}{\mathbf{x}\left(g_{1} g_{2}\right)}, \operatorname{det} g_{1} \frac{\mathbf{x}\left(g_{2}\right)}{\mathbf{x}\left(g_{1} g_{2}\right)}\right\rangle_{E, 2 n}
$$

For a quaternion algebra \mathbf{D} over \mathbf{F}, we can construct $\widetilde{\mathbf{D}_{\mathbb{A}}^{\times}}$similarly. Then for any place v where \mathbf{D}_{v}^{1} splits, the above covering group \mathbf{D}_{v}^{\times}is isomorphic to the usual $G \widehat{L_{2}\left(\mathbf{F}_{v}\right)}$. Moreover we have a splitting

$$
\mathbf{D}^{\times} \longrightarrow \widetilde{\mathbf{D}_{\mathbb{A}}^{\times}}
$$

Similar statements hold for $\widetilde{D^{1}}$.

Theorem
"Existence of transfer" holds for strict correspondence between D^{\times}and D^{\times}.

Theorem
For irreducible rep. π of D^{\times}there exists $\widetilde{\pi}$ such that

$$
J(\widetilde{\pi})=c \operatorname{Tran} \widetilde{D}^{\widetilde{D^{\times}}} J(\pi)
$$

Theorem?
We have a description of the packets for $\widetilde{D^{1}}$.

Thank you!

