On endoscopy for covering groups of SL(2).

Kaoru Hiraga

2012 Conference on L-functions 2012/08/23 Shineville Resort Jeju

1

Joint work with T. Ikeda (in progress.)

- Plan

- Brief review of Labesse–Langlands (endoscopy for SL_2).
- Endoscopy for 2-fold covering of SL_2 .
 - Fundamental lemma for F/\mathbb{Q}_2 .
 - Generalization of Kohnen's plus space.
- Endoscopy for n-fold covering of SL_2 where n is odd.
 - Endoscopy for $\widetilde{SL_2}$.
 - Covering groups of D^{\times} and D^1 .

Brief Review of Labesse–Langlands

F: p-adic field $G = SL_2(F)$:

h: regular semisimple

Elliptic endoscopic group H of G are one of the following type.

$$G$$

$$E^{1} = \{x \in E^{\times} | N_{E/F}(x) = 1\}, \quad E/F : \text{quadratic extension}$$

We regard H as an subgroup of G. $H \subset G$

$$a + b\tau \in E^{1} \mapsto \begin{pmatrix} a & bv \\ b & a + bu \end{pmatrix}$$
$$E = F(\tau)$$
$$\tau^{2} = u\tau + v$$

 $G_{\text{reg}} = \{g \in G | g \text{ is regular semisimple} \}$ g is regular semisimple if $\text{Cent}(g, G) \simeq GL_1$ is a torus.

 $H_{G-reg} = \{h \in H | h \text{ is regular semisimple in } G\}$

We say that $g, g' \in G$ is "stably conjugate" if there exists $x \in GL_2(F)$ such that.

$$g' = x^{-1}gx$$

We say that $h \in H_{G-reg}$ is an "image" of $g \in G_{reg}$ if h is stably conjugate to g in G.

{stable conjugacy class of G_{reg} } $\leftarrow -$ {stable conjugacy class of H_{G-reg} }

We can define a transfer factor

 $\Delta_{G,H}(h,g) \in \mathbb{C}^{\times}, \quad h \in H_{G-\text{reg}} \text{ is an image of } g \in G_{\text{reg}}.$

$$\sum_{g\in G_{\mathsf{reg}}/\sim} \Delta(h,g) J(g,\,\cdot\,) \longleftarrow J^{st}(h,\,\cdot\,)$$

We say that $f \in C_c^{\infty}(G)$ and $f^H \in C_c^{\infty}(H)$ have "matching orbital integrals" if

$$\sum_{g \in G_{\text{reg}}/\sim} \Delta_{G,H}(h,g) J(g,f) = J^{st}(h,f^H), \quad \forall h \in H_{G\text{-reg}}$$

~ Existence of transfer — For each $f \in C_c^{\infty}(G)$ there exists $f^H \in C_c^{\infty}(H)$ such that f and f^H have matching orbital integrals.

$$\begin{split} J(g,f) &= D(g) \int_{\text{Cent}(g,G) \setminus G} f(x^{-1}gx) \, dx \\ D(g): & \text{Weyl denominator} \\ G_{\text{reg}}/\sim: & \text{set of conjugacy classes in } G_{\text{reg}} \\ \Delta_{G,H}(h,g) &= 0 \text{ if } h \text{ is not an image of } g \\ J^{st}(h,f^H) &= \sum_{h'\sim_{st}h} J(h',f^H) \end{split}$$

$$\{\text{distribution on } G\} \stackrel{\mathsf{Tran}_{H}^{G}}{\longleftarrow} \{\text{stable distribution on } H\}$$

For stable distribution S on H, we define an invariant distribution $\mathrm{Tran}_{H}^{G}S$ by

$$\operatorname{Tran}_{H}^{G}S(f) = S(f^{H}),$$

where f and f^H have matching orbital integrals.

We say that S is "stable" if

$$S(f^H) = 0, \quad \forall f^H \in C_c^{\infty,-}(H),$$

where

$$C_c^{\infty,-}(H) = \{ f^H \in C_c^{\infty}(H) | J^{st}(h, f^H) = 0, \quad \forall h \in H_{\mathsf{reg}} \}$$

For $H = SL_2$ or E^1 for unramified E/F we have a homomorphism $\lambda : \mathcal{H}(G, K) \longrightarrow \mathcal{H}(H, K^H)$

 $\begin{aligned} \mathcal{H}(G,K): & \text{Hecke algebra} \\ K &= SL_2(\mathfrak{o}_F) \\ K^H &= H(\mathfrak{o}_F) \\ \mathfrak{o}_F: & \text{ring of integer of } F. \end{aligned}$

Fundamental lemma — For any $f \in \mathcal{H}(G, K)$, functions f and $\lambda(f)$ have matching orbital integrals.

Packet and endoscopy

 $\sharp \Pi_{\phi}(G) = 1, 2, 4$

Endoscopic groups for $\Pi_{\phi}(G)$ are

$$\begin{cases} G, & \#\Pi_{\phi}(G) = 1\\ G, \text{ one of } E^{1}, & \#\Pi_{\phi}(G) = 2\\ G, E_{1}^{1}, E_{2}^{1}, E_{3}^{1}, & \#\Pi_{\phi}(G) = 3 \end{cases}$$
Case $H = G$

$$\sum_{\pi \in \Pi_{\phi}(G)} J(\pi) = \operatorname{Tran}_{H}^{G}(\text{stable distribution})$$

is stable.

 $J(\pi)$: distribution character of π .

- Packet and endoscopy — If $\#\Pi_{\phi}(G) = 2$, then there exists a character π^{H} of $H = E^{1}$ such that

$$J(\pi_1) - J(\pi_2) = \operatorname{Tran}_H^G J(\pi^H)$$

If $\sharp \Pi_{\phi}(G) = 4$, then there exists a character π_i^H of E_i^1 (i = 1, 2, 3) such that

$$J(\pi_1) + J(\pi_2) - J(\pi_3) - J(\pi_4) = \operatorname{Tran}_{E_1^1}^G \pi_1^H$$
$$J(\pi_1) - J(\pi_2) + J(\pi_3) - J(\pi_4) = \operatorname{Tran}_{E_2^1}^G \pi_2^H$$
$$J(\pi_1) - J(\pi_2) - J(\pi_3) + J(\pi_4) = \operatorname{Tran}_{E_3^1}^G \pi_3^H$$

if you number π_1, \ldots, π_4 properly.

Correspondence between stable conjugacy of G and H

Existence of transfer

Fundamental lemma

 \Downarrow

Lift from representation of ${\cal H}$ to ${\cal G}$

Description of the packets

(We use twisted endoscopy and twisted trace formula of $GL_2(F)$ to get the results.)

n-fold covering group of $G = SL_2(F)$

F: p-adic field. \mathfrak{o}_F : ring of integers of F. \mathfrak{p}_F : prime ideal in \mathfrak{o}_F . μ_n : n-th roots of 1 in F^{\times} .

- Assumption We assume

$$\sharp \mu_n = n,$$

i.e., all *n*-th roots of 1 are contained in F^{\times} .

We can define n-th power norm residue symbol.

Definition *n*-fold covering group \widetilde{G} $\mathbf{1} \longrightarrow \mu_n \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow \mathbf{1}$ is defined by $[g_1, \zeta_1][g_2, \zeta_2] = [g_1g_2, \zeta_1\zeta_2\mathbf{c}(g_1, g_2)],$ $g_1, g_2 \in G, \zeta_1, \zeta_2 \in \mu_n$ where c is Kubota's 2-cocycle: $\mathbf{c}(g_1, g_2) = \left\langle \frac{\mathbf{x}(g_1)}{\mathbf{x}(g_1 g_2)}, \frac{\mathbf{x}(g_2)}{\mathbf{x}(g_1 g_2)} \right\rangle$ $\mathbf{x} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{cases} c, & c \neq 0 \\ d, & c = 0 \end{cases}$

 $\langle \,,\, \rangle_n$: *n*-th power norm residue symbol

Let $C_c^{\infty}(\tilde{G})$ be the space of locally constant compactly supported function \tilde{f} on \tilde{G} such that

$$\widetilde{f}(\widetilde{g} \cdot [1, \zeta]) = \zeta^{-1} \widetilde{f}(\widetilde{g}), \quad \forall \widetilde{g} \in \widetilde{G}, \, \zeta \in \mu_n$$

(Anti-genuine function.)

For subset A in G, we denote by \widetilde{A} the inverse image of A in $\widetilde{G}.$ For example,

$$\widetilde{G_{\text{reg}}} = \{ [g, \zeta] | g \in G_{\text{reg}}, \zeta \in \mu_n \}$$
$$\widetilde{SL_2(\mathfrak{o}_F)} = \{ [k, \zeta] | k \in SL_2(\mathfrak{o}_F), \zeta \in \mu_n \}$$

If
$$(n,p) = 1$$
 then we have a splitting
 $\mathbf{s} : SL_2(\mathfrak{o}_F) \longrightarrow S\widetilde{L_2(\mathfrak{o}_F)}$

For $\tilde{g} \in \widetilde{G_{\text{reg}}}$, we say that \tilde{g} is "relevant" if $\widetilde{x}^{-1}\widetilde{g}\widetilde{x} = \widetilde{g}$ for any $\widetilde{x} \in \widetilde{\text{Cent}(g, G)}$. We put $\widetilde{G}_{\text{rel}} = \{\widetilde{g} \in \widetilde{G} | \ \widetilde{g} \text{ is relevant.} \}$

If
$$\tilde{g}$$
 is not relevant then $\exists \tilde{x} \in Cent(g, G)$ s.t.
 $\tilde{x}^{-1}\tilde{g}\tilde{x} = \tilde{g}[1, \zeta'], \quad \zeta' \neq 1.$
Hence
 $J(\tilde{g}, \tilde{f}) = 0.$

$$J(\tilde{g},\tilde{f}) = D(g) \int_{\operatorname{Cent}(\tilde{g},\tilde{G})\setminus \tilde{G}} \tilde{f}(\tilde{x}^{-1}\tilde{g}\tilde{x}) d\tilde{x}$$

$$n_0 = \begin{cases} n/2, & n : \text{even} \\ n, & n : \text{odd} \end{cases}$$

 $\widetilde{g} = [g, \zeta] \in \widetilde{G_{\text{reg}}}$ is relevant if and only if there exists $h \in G_{\text{reg}}$ s.t. $g = h^{n_0}$ or $-h^{n_0}$

Elliptic endoscopic group of
$$\tilde{G}$$

 n : even PGL_2, PGL_2
 n : odd SL_2, E^1 (E/F : quadratic ext.)

- J. P. Schultz: n = 2
- A. Trehan: $\widetilde{SL_N}$ (n|N)
- Wen–Wei Li: 2-fold covering group of Sp(2N)

$$n = 2$$

 \sim_{st} : stably conjugate.

- Definition

If $h \in H^+(F)$ is an image of $[g, \zeta] \in \tilde{G}$ then we define a transfer factor Δ_{ψ}^+ by

$$\Delta_{\psi}^{+}(h,[g,\zeta]) = \zeta \frac{\alpha_{\psi}(1)}{\alpha_{\psi}(\det h)} \mathbf{c}(\det h \cdot \mathbf{1}_{2},g)$$

If $h \in H^-(F)$ is an image of $[g, \zeta] \in \tilde{G}$ then we define a transfer factor Δ_{ψ}^- by

$$\Delta_{\psi}^{-}(h, [g, \zeta]) = \alpha_{\psi}(1)^{2} \mathbf{c}(-1_{2}, g) \Delta_{\psi}^{+}(h, [-1, 1][g, \zeta])$$

 $\psi :$ non-trivial additive character of F

 $\gamma_{\psi}(x)$: Weil constant

$$\int_F \phi(t)\psi(xt^2)\,dt = \alpha_\psi(x)|x|^{-1/2}\int_F \hat{\phi}(t)\psi(-t^2/4x)\,dt, \quad \phi \in \mathcal{S}(F)$$
 where

$$\widehat{\phi}(t) = \int_F \phi(u)\psi(tu) \, du_{\psi}$$

is the Fourier transform of ϕ and du_{ψ} is the self-dual Haar measure.

- Theorem — "Existence of transfer" holds.

 \sim Theorem — If p is odd then "Fundamental Lemma" holds.

Theorem (Schultz) Let π be an irreducible admissible representation of $PGL_2(F)$. Then there are two admissible representations $\tilde{\pi}^+$ and $\tilde{\pi}^-$ of \tilde{G} , which are either irreducible or zero, such that $\operatorname{Tran}_{G_{+}}^{\tilde{G}}(J(\pi)) = J(\tilde{\pi}^+) + J(\tilde{\pi}^-)$

$$\operatorname{Tran}_{H^{-}}^{\widetilde{G}}(J(\pi)) = J(\tilde{\pi}^{+}) - J(\tilde{\pi}^{-})$$

 $\tilde{\pi}^+, \tilde{\pi}^-$ are described by theta correspondence and ϵ -factor.

Fundamental lemma for F/\mathbb{Q}_2

 ψ : non-trivial additive character of F c_{ψ} : maximum integer c such that $\psi(\mathfrak{p}_F^c)=\mathbf{1}$ $\mathfrak{c}=\mathfrak{p}^{c_{\psi}}$

$$\begin{split} \omega_{\psi}: \mbox{ Weil representation acting on } \mathcal{S}(F) \\ (\phi_1,\phi_2) &= \int_F \phi_1(x) \overline{\phi_2(x)} \, dx, \quad \phi_1,\phi_2 \in \mathcal{S}(F) \\ \mbox{ Haar meausure on } F \mbox{ is normalized so that } \mbox{Vol}(\mathfrak{o}_F) = 1. \end{split}$$

For ideals $\mathfrak{a}, \mathfrak{b}$ such that $\mathfrak{ab} \subset \mathfrak{o}_F$ we put

$$\Gamma[\mathfrak{a},\mathfrak{b}] = \left\{ \begin{pmatrix} \mathfrak{o}_F & \mathfrak{a} \\ \mathfrak{b} & \mathfrak{o}_F \end{pmatrix} \right\} \cap G$$

We put

$$\Gamma = \Gamma[\mathfrak{c}^{-1}, 4\mathfrak{c}]$$

We define a (anti-) genuine character $\epsilon : \widetilde{\Gamma} \longrightarrow \mathbb{C}^{\times}$ by

$$\omega_{\psi}(g)\phi_0 = \epsilon(g)^{-1}\phi_0,$$

where $\phi_0 \in \mathcal{S}(F)$ is the characteristic function of \mathfrak{o}_F .

The Hecke algebra $\widetilde{\mathcal{H}} = \widetilde{\mathcal{H}}(\widetilde{SL_2(F)}, \widetilde{\Gamma}; \epsilon)$ is the space of (anti-) genuine function $\widetilde{\varphi} \in \widetilde{C}^{\infty}_c(\widetilde{G})$ such that $\widetilde{\varphi}(\widetilde{\gamma}_1 \widetilde{g} \widetilde{\gamma}_2) = \epsilon(\widetilde{\gamma}_1) \epsilon(\widetilde{\gamma}_2) \widetilde{\varphi}(\widetilde{g}), \quad \widetilde{\gamma}_1, \widetilde{\gamma}_2 \in \widetilde{\Gamma}.$

We define an idempotent
$$e^K \in \widetilde{\mathcal{H}}$$
 by

$$e^K(\widetilde{g}) = \begin{cases} |2|_F^{-1}(\phi_0, \omega_{\psi}(\widetilde{g})\phi_0), & \widetilde{g} \in \Gamma(\mathfrak{c}^{-1}, \mathfrak{c}) \\ 0, & \text{otherwise} \end{cases}$$

$$\widetilde{\mathcal{H}}^{e^{K}} = e^{K} * \widetilde{\mathcal{H}} * e^{K} \longrightarrow \mathcal{H} = \mathcal{H}(PGL_{2}(F), PGL_{2}(\mathfrak{o}_{F}))$$

~ Fundamental lemma — "Fundamental lemma" holds for H^+ and H^- .

For general F/\mathbb{Q}_p , we define e^K and E^K similarly.

Kohnen plus space

$$F = \mathbb{Q}$$

$$\mathfrak{h} = \{ z \in \mathbb{C} | \operatorname{Im} z > 0 \}$$

$$S_{\kappa+(1/2)}(\Gamma_0(4)): \text{ space of cusp forms}$$

$$j^{\kappa+(1/2)}(\gamma, z) = (j^{1/2}(\gamma, z))^{2\kappa+1}, \ \gamma \in \Gamma_0(4), \ z \in \mathfrak{h}$$

$$\theta(\gamma(z)) = j^{1/2}(\gamma, z)\theta(z)$$

$$\theta(z) = \sum_{x \in \mathbb{Z}} \exp(2\pi\sqrt{-1}x^2z)$$

- Definition (Kohnen plus space) — $S_{\kappa+(1/2)}(\Gamma_0(4))$ is the space of $h \in S_{\kappa+(1/2)}(\Gamma_0(4))$ with Fourier expansion of the form

$$h(z) = \sum_{(-1)^{\kappa}N\equiv 0,1 \mod 4} c(N) \exp(2\pi\sqrt{-1}Nz)$$

 \sim Kohnen — As a Hecke module $S^+_{\kappa+(1/2)}(\Gamma_0(4))$ is isomorphic to $S_{2\kappa}(SL_2(\mathbb{Z}))$.

Generalization of Kohnen plus space

F: totally real number field of degree l over \mathbb{Q} A: ring of adele of F \mathfrak{o}_F : integer ring of F \mathfrak{d}_F : different for F/\mathbb{Q}

For $\kappa = (\kappa_1, \dots, \kappa_l) \in \mathbb{Z}_{\geq 0}^l$ we fix a unit $\eta \in \mathfrak{o}_{\mathbf{F}}^{\times}$ such that $N_{\mathbf{F}/\mathbb{Q}}(\eta) = \prod_{i=1}^l (-1)^{\kappa_i}.$ Let ψ be the additive character of \mathbb{A}/\mathbf{F} such that $\psi_v(x) = \exp(2\pi\sqrt{-1}\eta_v x), \quad \forall v: \text{ real.}$

$$\begin{split} \mathcal{A}_{\kappa+(1/2)}^{cusp}(SL_2(\mathbf{F})\backslash\widetilde{SL_2(\mathbb{A})})^{E^K} \\ &= \{\phi \in \mathcal{A}_{\kappa+(1/2)}^{cusp}(SL_2(\mathbf{F})\backslash\widetilde{SL_2(\mathbb{A})}) | \, \rho(E^K)\phi = \phi\}, \\ \end{split}$$
 where ρ is the right regular representation of $\widetilde{SL_2(\mathbb{A})}$.

Assume
$$\kappa_i > 1$$
 for some $i = 1, ..., l$, then

$$\mathcal{A}_{\kappa+(1/2)}^{cusp}(SL_2(\mathbf{F}) \setminus \widetilde{SL_2(\mathbb{A})})^{E^K} \xleftarrow{1:1} \mathcal{A}_{2\kappa}^{cusp}(PGL_2(\mathbf{F}) \setminus PGL_2(\mathbb{A})/\mathcal{K}_0)$$

$$\mathcal{K}_0 = \prod_{v < \infty} PGL_2(\mathfrak{o}_{\mathbf{F}_v})$$

Let

$$\begin{split} & \Gamma = \Gamma[\mathfrak{d}_{\mathrm{F}}^{-1}, 4\mathfrak{d}_{\mathrm{F}}] \\ & \tilde{j}\left(\begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \zeta \end{bmatrix}, z \right) = \begin{cases} \zeta \sqrt{d}, & c = 0, \, d > 0 \\ -\zeta \sqrt{d}, & c = 0, \, d < 0 \\ \zeta(cz + d)^{1/2}, & c \neq 0 \end{cases} \end{split}$$

 ι_1, \ldots, ι_l are embeddings of F into \mathbb{R} .

Assume $\kappa_i > 1$ for some i = 1, ..., l, then $\mathcal{A}_{\kappa+(1/2)}^{cusp}(SL_2(\mathbf{F}) \setminus \widetilde{SL_2(\mathbb{A})}; \epsilon)^{E^K} \stackrel{1:1}{\longleftrightarrow} \mathcal{A}_{2\kappa}^{cusp}(PGL_2(\mathbf{F}) \setminus PGL_2(\mathbb{A})/\mathcal{K}_0)$ Moreover

$$S_{\kappa+(1/2)}(\Gamma)^{E^{K}} = S^{+}_{\kappa+(1/2)}(\Gamma),$$

where $S^+_{\kappa+(1/2)}(\Gamma)$ is the space of $h(z) \in S^+_{\kappa+(1/2)}(\Gamma)$ with Fourier expansion of the form

$$h(z) = \sum_{\xi \equiv \Box \mod 4} c(\xi) \exp(2\pi \sqrt{-1}\xi z)$$

 $\xi \in \mathfrak{o}_F$ " $\xi \equiv \Box \mod 4$ " means $\exists x \in \mathfrak{o}_F$ s.t. $\xi \equiv x^2 \mod 4$

(M. Ueda studied the relation for higher level Γ .)

Theorem
For
$$h \in S_{\kappa+(1/2)}(\Gamma)^{E^K} \cap \mathcal{A}_{00}$$
 and totally positive $\xi \in \mathbf{F}^{\times}$ we have

$$\frac{|c_{\xi}|^2}{\langle \widetilde{\varphi_h}, \widetilde{\varphi_h} \rangle} = \mathcal{D}_K^{1/2} 2^{-1+3|\kappa|} \xi_F(2) \frac{L(1/2, \tau \otimes \widehat{\chi}_{\eta\xi})}{L(1, \tau, Ad)}$$

 $h \longleftrightarrow \widetilde{\varphi_h} \in \mathcal{A}_{\kappa+(1/2)}(SL_2(\mathbf{F}) \setminus \widetilde{SL_2(\mathbb{A})})^{E^K}$

 $\widetilde{\varphi_h} \longleftrightarrow \widetilde{\sigma}$ automorphic representation of $\widetilde{SL_2}$

au: automorphic representation of PGL_2 corresponding to $\widetilde{\sigma}$

 \mathcal{A}_{00} : The space of cusp forms orthogonal to the Weil representations associated to one-dimensional quadratic forms.

 $\hat{\chi}_a$: Hecke character of \mathbb{A}^{\times} corr. to $F(\sqrt{a})/F$.

 c_{ξ} : given by the ξ -th Fourier coefficient of h.

$$\langle \widetilde{\varphi_h}, \, \widetilde{\varphi_h} \rangle = \int_{SL_2(\mathbf{F}) \setminus SL_2(\mathbb{A})} |\widetilde{\varphi_h}(x)| \, dx$$

 \mathcal{D}_F : discriminant of F

 ξ_F : complete Dedekind zeta

n: odd

We have a strict correspondence between $SL_2(F)$ and $SL_2(F)$.

Definition We say that $h \in SL_2(F)_{reg}$ is a strict image of $[g, \zeta] \in \widetilde{SL_2(F)}_{rel}$ if $h^n \sim g$, where \sim means the conjugacy in $SL_2(F)$.

 $\begin{array}{l} \sim \text{ Definition (Transfer factor)} \\ \text{We define the transfer factor } \Delta_{st} \text{ by} \\ \\ \Delta_{st}(h, [g, \zeta]) = \begin{cases} \zeta, & h \text{ is a strict image of } [g, \zeta] \\ 0, & \text{otherwise} \end{cases} \end{cases}$

For the above correspondence, we have

Theorem — "Existence of transfer" holds. If (p,n) = 1 then "Fundamental lemma" holds.

Endoscopy for $\widetilde{SL_2(F)}$

Elliptic endoscopic group of $\widetilde{SL_2(F)}$ — $H = SL_2(F)$ or E^1

$$H \longrightarrow SL_2(F) \longrightarrow \widetilde{SL_2(F)}$$

Theorem — "Existence of transfer" holds for H. If (p,n) = 1 then "Fundamental lemma" holds for H. - Theorem — There exists packets

$$\Pi(\tilde{G}) = \{\tilde{\pi}\}$$

or
$$\Pi(\tilde{G}) = \{\tilde{\pi}_1, \tilde{\pi}_2\}$$

or
$$\Pi(\tilde{G}) = \{\tilde{\pi}_1, \tilde{\pi}_2, \tilde{\pi}_3, \tilde{\pi}_4\}$$

If $\sharp \Pi(G) = 2$

$$J(\tilde{\pi}_1) - J(\tilde{\pi}_2) = c \cdot \operatorname{Tran}_{E^1}^G J(\pi^H)$$

If $\sharp \Pi_{\phi}(G) = 4$, then there exists a character π_i^H of E_i^1 (i = 1, 2, 3) such that

$$J(\tilde{\pi}_{1}) + J(\tilde{\pi}_{2}) - J(\tilde{\pi}_{3}) - J(\tilde{\pi}_{4}) = c_{1} \cdot \operatorname{Tran}_{E_{1}^{1}}^{G} \pi_{1}^{H}$$
$$J(\tilde{\pi}_{1}) - J(\tilde{\pi}_{2}) + J(\tilde{\pi}_{3}) - J(\tilde{\pi}_{4}) = c_{2} \cdot \operatorname{Tran}_{E_{2}^{1}}^{G} \pi_{2}^{H}$$
$$J(\tilde{\pi}_{1}) - J(\tilde{\pi}_{2}) - J(\tilde{\pi}_{3}) + J(\tilde{\pi}_{4}) = c_{3} \cdot \operatorname{Tran}_{E_{3}^{1}}^{G} \pi_{3}^{H}$$

if you number $\tilde{\pi}_1, \ldots, \tilde{\pi}_4$ properly.

D: quaternion algebra

 D^1 : group of reduced norm 1 elements

We should have

$$D_{\rm rel}^{\times}/\sim \longrightarrow GL_2(F)_{\rm rel}/\sim$$

E/F: quadratic extension $E^{\times} \subset GL_2(F)$

$$[x,1]^{-1}[y,1][x,1] = [y,\langle y,\overline{x}\rangle_{E,n}]$$

In
$$GL_2(E)$$

 $\mathbf{c} \left(\begin{pmatrix} y & 0 \\ 0 & \overline{y} \end{pmatrix}, \begin{pmatrix} x & 0 \\ 0 & \overline{x} \end{pmatrix} \right) = \langle y, \overline{x} \rangle_{E,n}$

Square root of the 2-cocycle?
$$\begin{array}{ll} \langle\,,\,\rangle_{E,n}^m, & 2m\equiv 1 \mod n\\ \langle\,,\,\rangle_{E,2n} \end{array}$$

E/F: quadratic extension

Definition We construct a covering group D^{\times} by the following way. Let $GL_2(E)$ be the covering of $GL_2(E)$ by $\mathbf{c}(g_1, g_2) = \left\langle \frac{\mathbf{x}(g_1)}{\mathbf{x}(g_1, g_2)}, \det g_1 \frac{\mathbf{x}(g_2)}{\mathbf{x}(g_1, g_2)} \right\rangle_{T}^m .$ where $2m \equiv 1 \mod n$. $\widetilde{D^{\times}} \xrightarrow{\longrightarrow} \widetilde{GL_2(E)}$ $D^{\times} \longrightarrow GL_2(E)$ We define D^{\times} by the pull-back of the image of $D^{\times} \longrightarrow GL_2(E)$.

We can also construct $\widetilde{D^{\times}}$ from the covering of $GL_2(E)$ defined by the 2-cocycle

$$\mathbf{c}'(g_1, g_2) = \left\langle \frac{\mathbf{x}(g_1)}{\mathbf{x}(g_1 g_2)}, \det g_1 \frac{\mathbf{x}(g_2)}{\mathbf{x}(g_1 g_2)} \right\rangle_{E, 2n}$$

For a quaternion algebra D over F, we can construct $\widetilde{D}^{\times}_{\mathbb{A}}$ similarly. Then for any place v where D^1_v splits, the above covering group $\widetilde{D^{\times}_v}$ is isomorphic to the usual $\widetilde{GL_2(F_v)}$. Moreover we have a splitting

$$\mathbf{D}^{\times}\longrightarrow \mathbf{D}_{\mathbb{A}}^{\times}.$$

Similar statements hold for D^1 .

- Theorem — For irreducible rep. π of D^{\times} there exists $\widetilde{\pi}$ such that

$$J(\tilde{\pi}) = c \operatorname{Tran}_{D^{\times}}^{\widetilde{D^{\times}}} J(\pi)$$

- Theorem?

We have a description of the packets for D^1 .

Thank you!